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Summary: This paper studies the effects of large-scale sport events with live spectators
on COVID-19 infection trends at the local population level. Specifically, we compare the
development of incidence rates in 41 German Nomenclature of Territorial Units for Statistics
level 3 (NUTS-3) districts hosting a professional football match with at least 1,000 spectators
vis-à-vis similar districts without hosting a match. Our empirical analysis builds on difference-
in-difference and dynamic event study estimation for panel data. Synthetic control method is
applied as a robustness check. While our findings generally do not point to significant treatment
effects for the full sample of match locations, we find some noteworthy exceptions. Districts
hosting first league matches with spectator attendance above the median (> 6,300 persons) and,
particularly, matches without strict face mask requirements experienced a significant relative
rise in incidence rates 14 days after the match. We also find that intra-district mobility increases
on match days in treated districts, highlighting the significance of professional football matches
as mobility-based infection transmission channel.
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1. INTRODUCTION

When the first wave of the novel Severe Acute Respiratory Syndrome Coronavirus 2 Disease
(COVID-19) pandemic hit the world in spring 2020, policymakers all over the world reacted
with strict nonpharmaceutical interventions to suppress the spread of the virus. One particular
intervention was the cancellation or postponement of large-scale sport events with live spectators
(such as the Olympic Games in Tokyo and the European Football Championship 2020) given the
fear that these events may turn into super-spreading events (De Bruin et al., 2020; Parnell et al.,
2020). With declining infection numbers during the summer of 2020, restrictions on professional
sport events were temporarily lifted in most European countries—also allowing fans back into
the stadiums. Although the experience from this reopening could provide important insights for
future health policy decisions, yet, very little is known about the potential infection effects from
these reopened events. This is what we address in this paper.
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Whereas athletes, clubs, and organisers obviously have a strong interest in continuing their
professional activities, among other aspects, as a means to avoid detrimental revenue losses (see,
e.g., Drewes et al., 2021, for the financial implications of COVID-19 on professional football),
the broader public debate on the reopening of professional sport events is also concerned with
the proper health precautions for players, officials, live spectators, and, ultimately, the society in
general. That the political decision about the reopening of sport events for live spectators is not an
easy one is reflected in two very different political statements about the prospects of organising
large-scale sport events during the summer of 2021. While the Danish government announced
on March 25 that at least 11,000 fans shall be allowed to football matches staged in Copenhagen
during the rescheduled European Football Championship in June 2021,1 the Japanese government
has decided to make only a ‘last minute’ decision on whether domestic visitors shall be allowed
to watch the Olympic Games live or not. Even a full cancellation of the Olympic Games seems
still to be possible two months ahead of the planned opening ceremony on July 23 in light of
rising COVID-19 cases in Japan throughout May 2021.2

To support public health policy decisions in assessing the infection risks of large-scale sport
events with live spectators, this paper studies COVID-19 epidemiological trends associated with
the German professional football ‘experiment’ during the first phase of the 2020/2021 season in
late summer and early autumn 2020.3 This experimental phase permitted a varying number of
up to 10,000 spectators to watch football (soccer) matches live in the stadiums following explicit
and publicly communicated hygiene protocols. We believe that German professional football is
a suitable case study for our endeavour, as the setup allows us to identify epidemiological trends
in a precisely defined eight weeks event window throughout September and October 2020. It is
important to note, though, that our analysis is concerned with the reopening phase after the first
pandemic wave in 2020—a time period for which neither rapid testing for a large amount of
persons nor a vaccination against COVID-19 were yet available.

The focus of our analysis is on tracking epidemiological trends at the local population level in a
quasi-experimental setup. In our empirical identification strategy we compare the local COVID-
19 infection development in German districts—at the Nomenclature of Territorial for Statistics
level 3 (NUTS-3)—hosting a professional football match with at least 1,000 spectators to those
from a suitable comparison group of districts that did not host such an event. Our strategy builds
on a broad methodical basis for statistical inference to obtain robust treatment effects. Specifically,
we start out by running a series of difference-in-difference (DiD) estimations to compare average
changes in COVID-19 infection rates between treated and nontreated NUTS-3 districts over time.
We pay particular attention to the issue of regional heterogeneity as professional football clubs
(and therefore match locations) are much more likely to be situated in bigger and more densely
populated districts, which generally experienced higher infection rates during our sample period.

1 See, e.g., a news report by the Washington Post at https://www.washingtonpost.com/sports/soccer/fans-to-be-allo
wed-into-matches-in-copenhagen-at-euro-2020/2021/03/25/ccd51c6a-8d61-11eb-a33e-da28941cb9ac story.html (last
accessed: March 25, 2021).

2 See, e.g., news reports by the Spanish AS news website at https://en.as.com/en/2021/05/18/other sports/1621338645
150850.html (last accessed: May 19, 2021) and the New York Times at https://www.nytimes.com/2021/05/25/sports/ol

ympics/tokyo-olympics-cancel.html (last accessed: May 27, 2021).
3 Politicians and representatives from the German Football Association (DFL) have repeatedly called this a ‘testing

phase’ and ‘experimental phase’ for large-scale sport events, which is why we refer to the ‘German football experiment’;
see also https://www.n-tv.de/sport/fussball/Pandemie-Testphase-im-Stadion-So-tritt-die-Bundesliga-gegen-Corona-an
-article22044930.html (last accessed: November 19, 2020). However, we want to stress that the experimental phase did
not involve any randomised trial elements associated with the reopening to systematically assess drivers of the infection
dynamics. We do so here by means of quasi-experimental tools.
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We will account for this and other sources of regional differences not related to the treatment in
focus, i.e., hosting professional football matches.

Besides a general juxtaposition of average COVID-19 incidence rate differences in treated and
comparison regions, we are also interested in investigating the dynamic, i.e., time heterogeneous,
nature of these epidemiological trends. As an extension to the baseline DiD estimates, we therefore
implement a dynamic panel event study (PES) that allows us to study how daily treatment effects
evolve over time. As previous COVID-related research has shown, considering dynamic effects
is an important means to account for a latent incubation time, on the one hand, and accelerating
infection dynamics over time, on the other hand. Both aspects may render average static effect
estimates less conclusive. DiD and PES regressions are carried out in a two-way fixed effects
framework and account for the staggered treatment start across match locations as well as latent
confounding factors.

We apply synthetic control method (SCM) estimation as a robustness check. The SCM explicitly
matches treated and nontreated districts based on their pretreatment trends, including mobility
patterns and prior COVID-19 incidence rates, and is thus less sensitive to the common trend
assumption underlying DiD and PES estimation. By combining all three methods for the empirical
estimation of infection effects of professional football matches with spectators, we argue that this
ensures the robustness of our identification approach. To our knowledge, this is the first paper
that analyses the potential infection effects of large-scale sport events in times of COVID-19 at
the local population level.4

Foreshadowing key results, for our full sample covering all matches with at least 1,000 specta-
tors in all three professional football leagues together with the first round of the German national
cup (DFB Pokal), we generally do not find persistent evidence for significantly higher COVID-19
infection dynamics in the treatment group vis-à-vis comparisons regions after treatment start.
Although our estimates point to somewhat higher infection rates in treated regions, in almost all
cases this difference is not statistically significantly different from zero for our full sample. Re-
garding these nonsignificant results, one concern is obviously that our district-level identification
approach may suffer from a low power of detecting effects from individual football matches at the
local population level. To address this concern, we have additionally estimated relative mobility
effects on matchdays in NUTS-3 districts with matches showing that these regions have increased
mobility rates vis-à-vis those without matches. We take this as an indication that professional
football matches with at least 1,000 spectators are a significant event in treated NUTS-3 districts
and that it is reasonable to argue that potential infection effects should become visible at the local
population level (if present).

Different from the overall results, we find evidence for a statistically significant and dynamically
evolving increase in the population-level COVID-19 incidence rate for first league matches.
Analysing professional first league matches as a subsample of all matches is important as clubs
in this league have by far the largest fan base, which may thus lead to higher mobility rates at
match days and to stronger infection effects. These effects are particularly sizeable for first league
matches with the number of spectators above median (> 6,300 persons) and for matches in which
the use of face masks was only required when entering/exiting the stadium but not throughout
the entire match (i.e., when seated). Regarding the temporal evolution of effects, we find that

4 An assessment of the health effects from the restart of German professional football for players from the two highest
German leagues and officials working closely with them is reported in Meyer et al. (2021). The authors find that the
implemented hygiene protocol involving regular PCR testing proved effective in avoiding COVID-19 transmissions. The
conclusion for their study is that professional football training and matches can be carried out safely during the COVID-19
pandemic—though requiring strict hygiene protocols including regular PCR testing.
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they turn significant approximately 1–2 weeks after the match took place, which is consistent
with estimated incubation times and a reporting lag for the German COVID-19 data. Placebo
treatment regressions for home districts of the respective visiting (away) teams of a match do not
show any significant effect, which supports the causal interpretation of our results.

All in all, if we weigh the different estimation results against each other, we argue that certain
large-scale sport events, i.e., those with a large fan base that accordingly mobilise many people to
watch these events live, may pose an additional COVID-19 infection risk under the circumstances
studied. Such effects are most significant for estimators that account for the time dynamics in
incidence rate developments at the local population level. Importantly, our results also point to
policy implications in light of these findings. They suggest that proper hygiene protocols are a key
element to reduce the risk of higher COVID-19 infection rates for stadium visitors and the local
population. Most prominently, they point to the importance of enforcing strict and permanent face
mask regulations during stadium visits together with social distancing rules in the organisation
of such events. Public health rules (along with rapid testing of stadium visitors, which was not
available by the time of our analysis) should become even more important if further evidence
underlines the higher transmissibility of novel variants of concern (VOC) of the Coronavirus 2
(see, e.g., Davies et al., 2021) and if vaccination strategies have not yet established herd immunity.

2. INSTITUTIONAL BACKGROUND, DATA, AND VARIABLES

2.1. Institutional background

The first professional football matches with live spectators after the national lockdown in spring
2020 took place throughout September 2020 and covered the German national cup and the three
professional football leagues. During that time period, the spread of COVID-19 was largely under
control and daily infections rates were low to moderate. For instance, the seven-day incidence
rate as key epidemiological indicator in Germany varied between 10 and 15 cases per 100,000
inhabitants (over the last seven days) throughout this period. Nonpharmaceutical interventions
were less restrictive compared to the lockdown phase in spring but were still in place. Specifically,
in most federal states, only up to ten persons were allowed to meet in a public space, with some
exemptions being granted for amateur sport activities. For example, in North Rhine-Westphalia
(the largest German state with the most professional football clubs), shops, restaurants, bars, and
other private and public establishments were open, but with a maximum number of customers
and with strict face mask obligations for any indoor activity in public (CoronaSchVO, 2020).

These prevailing public health regulations illustrate the unique role of professional football
matches with many spectators in terms of gathering of people. In response to a growing public
demand for these activities, the federal government and state-level governments agreed on an
experimental test phase over six weeks, which allowed stadium visits by fans under the following
conditions. First, the seven-day incidence in districts hosting a match should be below 35 per
100,000 inhabitants in the days before the match.5 Second, the stadium capacity could only be
utilised up to a certain limit, typically 20−25% of the maximum stadium capacity. Third, in order
to keep inter-regional mobility low, fans from away teams were generally not allowed to enter
the stadiums.

5 This implied that some professional football matches during this test phase took place as ‘ghost games’ without live
spectators, see Table S3 in the Online Appendix for details on first league matches.
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In addition, organising clubs were requested to immediately apply changes to public health
regulations issued by German federal states and, in general, local authorities requested individual
hygiene protocols taking critical contact points such as arrival in the stadium, ticket personal-
isation, and the spatial distribution of spectators within the stadium into account. These local
hygiene protocols also included possible face mask obligations for attending a match. While
these hygiene rules should generally avoid a close crowding of fans inside the stadium, they are
not always effective to ensure distancing in reality.6 Moreover, while most rules were common for
all match locations, importantly, certain variations in the design of the specific hygiene protocols
for individual matches could be observed due to regulations by local authorities. This enables us
to test for different channels of potential disease transmission.

2.2. Data and variables

Our analysis uses district-level data (NUTS-3 level) on the number of newly reported COVID-19
cases provided by the Robert Koch Institute (RKI), which is in charge of infectious disease
surveillance in Germany. The RKI publishes the most recognised COVID-19 database for Ger-
many based on information fed into the database by local health authorities (RKI, 2021). Data
can be accessed freely via the RKI dashboard at: https://npgeo-corona-npgeo-de.hub.arcgis.com.
The database offers, among others, information on new infections for each NUTS-3 district on
any given day.

While our district-level identification approach thus differs from micro-methods that directly
try to retrace infection chains of persons tested positive for SARS-CoV2 on the basis of tracking
and outbreak reports, we believe that our regional focus is a suitable choice for two reasons.7 First,
in the German public health monitoring system, individual transmission chains can be traced back
to specific events only for a small (and potentially systematically biased) fraction of reported cases
(RKI, 2020a, 2020b). This leaves room for latent transmission channels. Accordingly, statements
from local health authorities, such as in Berlin, which report to have found no evidence for
reported infections from stadium visitors to Hertha BSC and 1.FC Union Berlin based on such
tracking reports, should be interpreted carefully.8 A district-level analysis implicitly captures all
such latent transmissions that take place at the local level. Second, the district level also gives us
the opportunity to detect potential infection chains which are only indirectly linked to the stadium
visit, such as the intensity of public transport use, gatherings outside the stadium, and mobility
during match days in general. This may provide important insights for public health policy.

We merge the COVID-19 data with district-level, cross-sectional information (population,
population density, age structure, local health system, etc.) obtained from the INKAR online
database of the Federal Institute for Research on Building, Urban Affairs and Spatial Development
(BBSR, 2021). We also collect data on daily temperatures per NUTS-3 district from Deutscher
Wetterdienst (DWD, 2021) and data on daily mobility changes per NUTS-3 district from the
German Statistical Office (Destatis, 2021). Mobility changes (in percent) based on individual
mobile phone data are computed as the difference in mobility patterns between a specific calendar
date and the average monthly value for the corresponding weekday in the previous year. For

6 See, e.g., a press report from Westfalenpost showing celebrating fans of Bayern Munich (without social distancing)
after winning the Supercup: https://www.wp.de/sport/bayern-sieg-mit-nebenwirkung-fans-sorgen-fuer-corona-aerger-
id230520196.html (last accessed: November 14, 2020).

7 See Tupper et al. (2020) for an event-based identification approach from such outbreak reports.
8 See a report by the German-wide sports news portal Kicker at: https://www.kicker.de/behoerden-keine-corona-inf

ektionen-bei-hertha-und-union-heimspielen-nachweisbar-788386/artikel (last accessed: November 14, 2020).
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instance, a value of −20 shows that mobility for a given day in 2020 was 20% lower than the
average mobility for the same weekdays in the respective month of 2019.9

Data on the timing of professional football matches together with information on the number
of spectators are obtained from the German Football Association (Deutscher Fussball-Bund; see
DFB, 2021a) website. Data on stadium size, car parking capacities, specific hygiene protocols
(e.g., with regard to the maximum number of spectators permitted; social distancing measures
applied, such as mask wearing protocols and sequence of admittance of fans into the stadium,
etc.) are collected from the websites of the individual football clubs and further online resources
accessible through the DFB data centre (DFB, 2021b). All study data used for our analysis are
publicly available and are provided as supplementary information to facilitate replication studies.

An outcome variable of interest is the rate of new infections by NUTS-3 district and day defined
as

IRi,t = Casesi,t

Populationi

× 100,000,

where Casesi,t is the number of newly reported COVID-19 cases in region i at time t and
Populationi is the district’s population level (measured as of December 31, 2019); IRi,t is typically
referred to as (daily) incidence rate. While our analysis mainly uses this incidence rate as key
outcome variable, we also define the seven-day incidence rate as the sum of daily incidence
rates over the last seven days per 100,000 of local population. The seven-day incidence is used in
Germany specifically for disease surveillance and for public policy decisions. In several instances,
we also use the seven-day incidence to compute descriptive statistics and robustness tests. The
advantage of the seven-day incidence rate as a rolling indicator is that it is less sensitive to outliers;
however, at the same time it is less precise in identifying daily effects associated with a certain
event. Our choice for using one of the two incidence rates for specific empirical tests is closely
linked to our empirical identification strategy and the choice of estimators.

3. ESTIMATION STRATEGY

3.1. Overview

Our estimation strategy is based on three pillars. We start with a baseline DiD approach (first
pillar) that compares the average development in COVID-19 incidence rates over time (pre- vs.
post-match) and across regions (districts with vs. districts without matches). These static DiD
estimates should be seen as a first and straightforward baseline test for the significance of potential
infection effects of professional football matches at the local population level. Subsequently, we
extend this approach in two directions: (a) we run a dynamic PES (second pillar), which allows
us to place a stronger focus on (i) the identification of dynamic effects and (ii) an intra-group
comparison between treated districts hosting a match at different points in time. (b) We apply
the SCM (third pillar), which places a particular emphasis on matching treated and nontreated
districts based on their pretreatment COVID-19 trajectories and further structural characteristics.
It is thus less sensitive to the common trend assumption in DiD and PES estimation. Estimator
details are given below.

9 See also Schlosser et al. (2020) for an analysis of COVID-related regional mobility changes in Germany.
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3.2. Difference-in-difference estimation

3.2.1. General setup. We chose DiD estimation as our baseline specification as it is a well-
established tool for estimating average treatment effects on the treated (ATT) (e.g., Lechner, 2010).
A recent discussion of the use of DiD estimation to identify causal effects of COVID-19 policies
is given in Goodman-Bacon and Marcus (2020). Here we apply the DiD estimations within the
general class of two-way fixed effects (FE) model specifications, which allows us to account for
latent structural differences between regions (time constant) and further observed common time
varying confounding factors other than the treatment event in focus (see, for instance, Cho, 2020,
for a similar approach assessing lockdown effectiveness related to COVID-19 at the country
level).10

It is important to point out that the DiD approach taken here already accounts for the staggered
treatment start across cross-sectional units (see, e.g., Athey and Imbens, 2018; Goodman-Bacon,
2018; Borusyak and Jaravel, 2020). While some scholars, such as Sun and Abraham (2020),
distinguish an event study from the DiD approach based on the presence of a staggered adoption
design, we here refer to a panel event study as a tool to estimate dynamic, i.e., time heterogeneous
effects, rather than static treatment effects.11 The DiD model proposed as our baseline specification
accordingly corresponds to a static panel event study in the definition of Sun and Abraham (2020).
This baseline specification with staggered treatment adoption can be written as

IRi,t = δFTBi,t + Xi,tβ + τt + μi + εi,t , (3.1)

where FTBi,t is the treatment indicator for football matches (see details below) and Xi,t captures
additional time varying control variables, in particular (linear and quadratic), region type-specific
time trends, τt are common time fixed effects for sample days, and μi controls for time constant,
region fixed effects, while εi,t is the model’s error term. Our focus is on estimating the coefficient
δ, which essentially captures the impact of large-scale sport events on the (daily) incidence rate
in the time period after the football match took place. A positive and statistically significant
estimate would imply that hosting professional football matches with spectators increases, on
average, the infection rate in treated vis-à-vis comparison regions. Equation (3.1) describes a
static panel model setup with regard to the evolution of the outcome variable. As a robustness
test, we also estimate (3.1) as a dynamic panel data model by including a one-period lagged
value of the incidence rate among the regressors. This inclusion shall additionally control for the
autoregressive nature of IRi,t apart from the above described time trends.

Our treatment indicator FTBi,t is a binary dummy that takes a value of 1 from the day onwards
when the individual NUTS-3 district i hosts the first professional football match (Matchi) with at
least 1,000 spectators, i.e., FTBi,t = 1[t ≥ Matchi]. Hence, we focus on an absorbing treatment
such that the treatment status is a nondecreasing series of zeros and ones (Sun and Abraham,
2020). We incorporate all matches in our event-based definition of FTBi,t that took place from
September 11 to September 28, 2020. These matches include the first round of the national cup
(DFB-Pokal) and the first two match days of the first three professional football leagues (erste,
zweite und dritte Bundesliga), respectively.12 Limiting our treatment period to the first two match

10 Such structural differences may occur from different testing strategies at the regional level and changes in nationwide
testing procedures. Region and time fixed effects control for such differences.

11 Sun and Abraham (2020) define a difference-in-difference design as a setting where units either receive their first
treatment at a common time period t0 or are never treated.

12 Districts that have hosted more than one match during the sample period (i.e., those with more than one football
club in German professional leagues) are defined as treated regions at the first match day.

C© 2021 Royal Economic Society.
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days ensures that we do not measure multiple treatments per district because the clubs hosting
a match at the first match day are playing in another city on the second match day (and would
only host a new match the week after). Moreover, as default specification, all of our analyses
are trimmed to a maximum time window of 14 days after treatment start as this date typically
marks the beginning of the next (home) match day for each club. This post-treatment period is
also applied in the subsequent PES and SCM estimations.

As it has been shown in detail in Mitze et al. (2020), a time lag of 14 days is generally sufficient
to cover approximately 75% of reported infections associated with a specific day t in the RKI
data given that incubation times and a reporting lag need to be considered. Hence, the chosen
time windows for the treatment period should be sufficient to identify potential infection effects
associated with the treatment. Robustness tests include a maximum lag of up to 20 days after
the match day. A summary table including information on match days, matches, and spectators
is given in Table S1 in the Online Appendix. Additionally, Figure S1 in the Online Appendix
provides an overview of our sample organisation. As the table shows, our overall sample covers
the period between August 10 and October 18, 2020.

3.2.2. Regional Heterogeneity. A closer inspection of the data indicates the necessity of an
identification strategy that accounts for underlying differences between districts in the treatment
and comparison group. This is shown in Table 1, which highlights basic characteristics of NUTS-3
districts together with t-tests for mean differences between groups. As the table reveals, treated
districts, i.e., those with professional football clubs (across all three leagues) hosting a match with
at least 1,000 spectators, have, on average, larger population levels and are also characterised by
a higher population density than nontreated comparison regions indicating that treated regions
are mainly urbanised centres. This difference also become evident if we compare the share of
regions belonging to different structural region types as measured by the BBSR (2021). While
all treated regions belong either to the group of large district-free cities (kreisfreie Städte; region
type I) or urbanised districts (Landkreise; region type II), this is only the case for roughly 45%
of comparison regions. None of the matches have taken place in districts (Landkreise) of type
3 or 4, which comprise (sparsely populated) rural areas in the definition of BBSR (2021). For
these variables and further indicators of the regional demographic composition, the results of the
reported t-tests point to significant mean differences across groups.

In addition to the higher mean incidence rate in treated NUTS-3 districts, a closer look at
epidemiological trends for the four different region types illustrates that an approach which
only covers time constant differences (i.e., district fixed effects) between groups may fail to
provide credible evidence. Specifically, it may lead to a rejection of the common trend assumption
underlying DiD estimation, which states that treated and nontreated districts would have followed
parallel trajectories over time if treatment had not occurred (Lechner, 2010). Figure 1 shows the
heterogeneity of the 7-day incidence rate (per 100,000 inhabitants) across the region types
throughout September/October 2020, pointing to a stronger increase of the infections (in absolute
terms) in NUTS-3 districts of type 1 and 2 in contrast to type 3 and 4. Given that all matches with
spectators have taken place in regions of type 1 or 2, the figure underlines the need to account for
this growing structural regional difference in our DiD estimations.

We propose three alternative estimation methods to overcome this problem. As a first solu-
tion, we reduce the number of cross-sections (regions) in the sample to cover only NUTS-3
districts of type 1 and 2. Following this idea, those districts (defining the comparison group)
within this subsample in use are much more likely to be similar to the group of treated dis-
tricts. However, the sample size decreases significantly following this approach. As a second

C© 2021 Royal Economic Society.
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Table 1. Structural characteristics of treated and nontreated (comparison) NUTS-3 districts.

Groups
Treated mean

(SD)
Comparison
mean (SD) Difference

Number of included NUTS-3 districts 41 360

Incidence rate (new infections per 100,000 of population) 3.24 2.40 0.841***

(0.078) (0.028)
Seven-day incidence rate (per 100,000 of population) 20.56 15.05 5.503***

(1.578) (0.491)
Mobility changes (in %, relative to previous year) − 0.169 − 0.033 − 0.137***

(0.009) (0.006)
Average temperature (in degree Celsius) 13.74 13.04 0.707***

(0.122) (0.047)
Population (in persons) 478,930.20 175,433.90 303,496***

(13,408.820) (945.871)
Population density (persons per km2) 1,703.86 400.49 1,303.4***

(18.532) (4.153)
Region type 1 (large cities, kreisfreie Städte) 0.85 0.09 0.765***

(0.008) (0.002)
Region type 2 (Urbanised districts, Landkreise) 0.15 0.35 − 0.201***

(0.008) (0.004)
Region type 3 (rural districts, Landkreise) 0 0.28 − 0.281***

(0.003)
Region type 4 (sparsely populated districts, Landkreise) 0 0.28 − 0.283***

(0.003)
Share of females in population (in %) 50.81 50.57 0.236**

(0.017) (0.005)
Average age females (in years) 44.22 46.059 − 1.840***

(1.831) (2.060)
Average age males (in years) 41.35 43.381 − 2.029***

(1.435) (1.758)
Old-age dependency rate (in %) 30.83 34.75 − 3.924***

(5.408) (5.328)
Young-age dependency rate (in %) 19.924 20.609 − 0.684***

(1.396) (1.429)
Physicians (per 10,000 of population) 18.44 14.148 4.294***

(3.259) (4.298)
Pharmacies (per 100,000 of population) 27.815 26.911 0.904

(3.976) (4.978)
Share of highly educated in population (in %) 22.21 12.02 10.195***

(0.164) (0.039)

Notes: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10 are significance levels for t-tests on mean difference (null hypothesis: equal
means); SD = standard deviation. Data on newly reported COVID-19 cases used to calculate incidence rates are taken
from RKI (2021); mobility data are taken from the German Statistical Office (Destatis, 2021) and average temperature
from the Deutscher Wetterdienst (DWD, 2021). All other regional variables are obtained from the INKAR database
(Indikatoren und Karten zur Raum- und Stadtentwicklung) of the German Federal Institute for Research on Building,
Urban Affairs and Spatial Development (BBSR, 2021; data are extracted for the latest available sample year, 2017). See
main text for further variable descriptions.

C© 2021 Royal Economic Society.



10 P. Breidenbach and T. Mitze

0
10

20
30

40
50

S
ev

en
-d

ay
 in

ci
de

nc
e 

ra
te

02sep2020 16sep2020 30sep2020 14oct2020

Region type 1 Region type 2

Region type 3 Region type 4

(c
as

es
 la

st
 7

 d
ay

s 
pe

r 1
00

k 
po

p.
)

Figure 1. Temporal evolution of seven-day incidence rates by region types.
Notes: See Table 1 for further information on the categorisation of the four different region types.

Source: Own figure based on data from the INKAR database (Indikatoren und Karten zur Raum- und
Stadtentwicklung) of the German Federal Institute for Research on Building, Urban Affairs and Spatial

Development (BBSR, 2021).

solution, we rely on the full sample and include region type-specific (linear and quadratic) time
trends in addition to common day fixed effects (τt ). These trends are able to capture different
infection dynamics across region types while still allowing us to conduct inference based on
the full sample of German NUTS-3 regions. However, trends which are (at least partly) based
on the deviating development of the treatment group are prone to confound with treatment
effects.

As a third solution, we apply a doubly robust (DR) estimator, which combines two alternative
approaches of controlling for confounding factors in order to correctly estimate the treatment
effect on the outcome (Funk et al., 2011). Specifically, we extend the standard regression-adjusted
DiD approach as in (3.1) by inverse probability weighted (IPW) estimation (see, e.g., Heckman
et al., 1998; Abadie, 2005; Sant’Anna and Zhao, 2020). The main idea of controlling for observed
confounding factors in the IPW approach is to assign larger sample weights to nontreated districts,
which have similar characteristics as treated districts during a time period before treatment starts.
This, in turn, could make the common trend assumption more credible. One advantage of the DR-
DiD approach is, hence, that it delivers consistent estimates if at least one of the two estimation
approaches is correctly specified (Sant’Anna and Zhao, 2020). With respect to the analysis
of treatment effects associated with COVID-related policy interventions, Goodman-Bacon and
Marcus (2020) point to the particular importance of using reweighting schemes for sample units to
balance pretreatment infection levels and trends across groups. Here we follow the main strand of
the empirical literature on DR estimation that suggests a propensity score (PS) based parametric
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reweighting approach. PS values are thereby obtained from a first-step probit model that specifies
the likelihood of a district to be included in the treatment group, i.e., to host a professional football
match with live spectators.

Regional sociodemographic characteristics, as shown in Table 2, as well as lagged values of
the (cumulative) incidence rate are included in the first-step probit model, which is estimated as
pooled specification for the pretreatment period from August 10 to September 10, 2020 (the first
professional football match covered in our sample takes place on September 11, 2020). Detailed
regression outputs for the probit model are given in the Online Appendix (Table S2) as well as
tests for covariate balancing before and after PS-based reweighting. Having obtained a set of
PS values with satisfactory balancing properties, we then reestimate (3.1) by means of weighted
least squares (WLS) regression (e.g., Freedman and Berk, 2008). To account for uncertainties
associated with PS estimation, as a robustness test to standard inference, we also employ a two-
step bootstrap method to calculate treatment effects and associated standard errors. The advantage
of this two-step procedure is that it includes PS estimation and sample weight specification in
each bootstrap iteration (see Wooldridge, 2010, and Bodory et al., 2020, for a general assessment
of bootstrap methods for weighting estimators).

Taken together, we argue that the chosen baseline DiD specification with staggered treatment
start is flexible enough to allow us to check the robustness of the estimated treatment effects for
alternative estimation specifications (e.g., dynamic panel estimation, doubly robust estimation)
and varying sample settings. However, as outlined in Borusyak and Jaravel (2020), one potential
problem of the baseline estimates is that effects may be biased if short- and long-run effects
differ, i.e., if treatment effects have strong dynamics. In this setting, the authors suggest running
unrestricted regressions which do not impose any restrictions on the dynamics of treatment effects
post-treatment.

3.3. Panel event study

We do so by applying a dynamic panel event study (PES). Whereas our static baseline speci-
fication estimates a single time constant treatment effect, this may be problematic in dynamic
settings in which the treatment only gradually impacts the outcome variable over time put
then has a potentially accelerating effect. This may be a relevant effect trajectory, particularly
for epidemiological data. Additionally, in switching to a PES design, we can overcome ma-
jor problems of the definition of suitable comparison groups (shown above) where treated and
nontreated regions are prone to develop differently over time. As shown in (3.2), we establish
an estimation strategy in our panel event study that controls for different developments be-
tween both groups over the whole observation period without affecting the estimated treatment
effect.

Dynamic PES setups have previously been applied in a broad variety of settings to estimate
COVID-related dynamic treatment effects, such as school reopening in Germany (Isphording
et al., 2020; Von Bismarck-Osten et al., 2020), university students travelling during the US spring
break (Mangrum and Niekamp, 2020), and mass protests from the Black Lives Matter movement
(Dave et al., 2020). The dynamic PES design, as shown below, seeks to identify daily treatment
effects in the following manner

IRi,t =
M∑

j=−N

δj FTBj

i,t + Xi,tβ + τt,T reat + μi + εi,t , (3.2)

C© 2021 Royal Economic Society.
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where δj FTBj

i,t is the j th element of a set of binary, absorbing treatment indicators defined as

FTBj

i,t =
⎧⎨
⎩

1[t ≤ Matchi + j ] if j = −N

1[t = Matchi + j ] if − N < j < M,

1[t ≥ Matchi + j ] if j = M

and the index j = −N, . . . ,M denotes the maximum number of leads (−N ) and lags (M)
considered for estimation (Schmidheiny and Siegloch, 2019). The inclusion of −N leads explicitly
tests for earlier effects in the outcome variable prior to treatment start. If such effects are significant
and positive, a rise in the incidence rate in district i is likely driven by other latent factors, rather
than by the hosting of a professional football match with live spectators. However, if those effects
are absent before treatment start and coefficients for FTBj

i,t turn significant after this start for some
of the included M lags, in our case, we take this as statistical evidence for significant infection
effects of hosting a match. Plotting daily treatment effects δj allows us to identify the phasing-in
on effects.

Similar to the static DiD baseline approach, we trim the panel to be balanced in relative periods,
both 14 days before and after each football match, to arrive at a balanced panel in relative time.
As Table 1 has shown significant differences between treated districts (hosting football matches)
and nontreated districts, we model these differences in the estimation of treatment effect on
incidence rates. Different from the baseline DiD specification, the PES allows us to control for
heterogeneous daily developments in incidence rates between treated and nontreated districts.
This is implemented by daily time effects for treated regions (τt,Treat) in addition to the daily
effects for all (treated and nontreated) regions (indicated by τt ). The effects of the matches are
nevertheless still identified as they are not measured via daily effects in the calendar time but via
the daily effects in the relative time (depending on the temporal distance to the match) and we
can fully control for different developments (even after the treatment start) between treated and
nontreated districts. Implicitly, the treatment effects FTBj

i,t then indicate the differences at day
i between treated regions which already hosted a match j days before and those which did not
host a match in that temporal distance.

In the estimation of (3.2), the treatment indicator FTBj

i,t for the last pretreatment observation
(j = −1) is omitted to capture the baseline difference between treated and nontreated districts.
Taken together, the panel event study approach as in (3.2) can hence be seen as an important
extension and robustness check to our static baseline DiD estimation approach. However, both
the static DiD and the dynamic PES approach chiefly depend on the validity of the common trend
assumption. While we can cautiously use the daily PES results as a test for the presence of trend
differences and anticipation effects before the treatment start, Sun and Abraham (2020) have
pointed out that pre-trend estimates may be contaminated, i.e., that there is a nonzero correlation
between the individual coefficients δj , which may result in a low power of this test.

3.4. Synthetic control method

We apply the synthetic control method (SCM) to check the robustness of the dynamic PES results.
Similar to the PES approach, SCM can be used to track the evolution of treatment effects over
time, where—in line with DiD and PES estimation—effects are estimated as changes in outcomes
between a pretreatment and treatment period for treated and nontreated units. A key difference is,
however, that the SCM approach does not rely on the common trend assumption as the presence
of common trends between treated and nontreated comparison units is in itself a favourable factor
for finding an appropriate counterfactual trajectory. The key identification approach of SCM is
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thus to establish a counterfactual that mimics a situation in which the treatment, i.e., professional
football matches, would not have taken place in treated districts. This is implemented by means
of creating a synthetic control group consisting of the comparison districts chosen from a donor
pool and by comparing the outcomes of treated units and the synthetic control after the start of
the treatment.

The match between treated districts and the synthetic control group prior to treatment start
is done through a minimum distance approach for a set of predictor variables evaluated along
their pretreatment values for treated districts and all regions in the donor pool. This ensures that
pretreatment differences in trends of the outcome variable are levelled. A formal description of the
SCM approach and its underlying conceptual requirements is given in Abadie and Gardeazabal
(2003); Abadie (2005); Abadie et al. (2010); Abadie (2020); Cavallo et al. (2013) among others.
The Cavallo et al. study also extends single treatment SCM estimation to the case of multiple
treated units as it is applied here. SCM has previously been applied to COVID-related research, for
instance, to study the effect of face masks on SARS-CoV-2 infection numbers in Germany (Mitze
et al., 2020), epidemiological trends associated with the emergence of SARS-CoV-2 variants of
concern (Mitze and Rode, 2021) as well as lockdown effectiveness for a counterfactual of Sweden
(Cho, 2020) and the United States (Friedson et al., 2021).

Here we essentially follow the approach presented in Mitze et al. (2020), which also builds
on data for German NUTS-3 districts. We use a broad set of time varying and time constant
predictor variables in the pretreatment period to construct the synthetic control group. Time-
varying predictors include daily values for the incidence rate, the average temperature, and
mobility changes in the last seven days before treatment start. Time constant predictors as chosen
in Mitze et al. (2020) further comprise population density (population/square kilometre), regional
settlement structures (categorial dummy), the share of highly educated in the population (in %),
the share of females in the population (in %), the average age of females and males in the
population (in years), old- and young-age dependency ratios (in %), the number of physicians
per 10,000 of the population, and pharmacies per 100,000 of the population.

We apply SCM for multiple treated units and calculate a synthetic control group for each of the
41 NUTS-3 regions hosting a professional football match. The donor pool of controls is limited
to nontreated districts out of the group of large district-free cities (kreisfreie Städte; region type
I) or urbanised districts (region type II). As outlined above, this will ensure that predictor values
of treated districts are not extremely relative to those values of comparison districts in the donor,
i.e., that treated districts lie in the convex hull of comparison districts (Abadie, 2020).

Statistical significance of the estimated treatment effect is based on permutation. Specifically,
we calculate 95% confidence intervals (CIs) from pseudo p-values obtained on the basis of com-
prehensive placebo-in-space tests. These tests calculate pseudo-treatment effects for all districts
in the donor pool treating each of these districts as if it would have received the treatment. If
the distribution of placebo effects yields only very few effects as large as the main estimate for
treated units, then it is likely that the estimated effect is not observed by chance. One advantage
of this exact permutation-based test is that it does not impose any distributional assumption on
the model’s errors (Abadie, 2020).13 For multiple treated units, placebo effects are computed in
such a way that each nontreated comparison unit is thought of as entering treatment at the same

13 However, to be formally valid, this would ideally require a random assignment of treatment among units, a condition
which is hardly met in observational studies. A solution to this problem would be to employ a permutation scheme that
incorporates information in the data on the assignment probabilities for different units in the sample (Abadie, 2020).
While it is beyond the scope of this paper, we hope that future work can further draw on this aspect.
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time as the treated unit. Hence, two treated units with the same treatment start will have the same
placebo sets.

Moreover, to account for differences in pretreatment match quality of the pseudo-treatment
effects, only donor regions with a good fit in the pretreatment period are considered for inference.
Specifically, we do not include placebo effects in the pool for inference if the match quality of
the control region, measured in terms of the pretreatment root mean squared prediction error
(RMSPE), is greater than 10 times the match quality of the treated unit (Cavallo et al., 2013).
Based on the obtained pseudo p-values we calculate confidence intervals as described in Altman
and Bland (2011). As the number of placebo averages becomes very large for multiple treated
units, we conduct inference on the basis of a randomly drawn sample of 1,000,000 placebo
averages (Cavallo et al., 2013).14

3.5. Estimation power

As described above, one concern for our identification strategy is related to the estimation power
of our approach given that live spectators in stadiums only account for a fraction of the local
population in a NUTS-3 district. Accordingly, analysing population-level epidemiological trends
may not detect infection effects from professional football matches. To provide some evidence
on the relevance of football matches for the infection development in a NUTS-3 district, we run
an auxiliary regression which checks for the presence of mobility effects in hosting districts at
match days. The idea is that football matches are only likely to have an observable impact at
the population level if this event is sufficiently large to increase the general mobility level within
a NUTS-3 district. Our auxiliary regression equation to test for mobility effects of professional
football matches as a prerequisite for potential infection effects takes the following form

mobilityi,t = γ mdayi,t +
∑
n=0

Xi,t−nβ + weekt + dowt + μi + υi,t , (3.3)

where mobilityi,t is a measure for mobility changes on a daily base as defined above and mdayi,t is
a nonabsorbing binary dummy, which is one if the NUTS-3 district hosts a professional football
match on this day, i.e., mdayi,t = 1[t = Matchi]. Equation (3.3) also controls for the average
temperature in the NUTS-3 district on day t and includes t − n lagged values of mobility and the
incidence rate (with n = 3). Finally weekt and dowt are week fixed effects and day-of-the-week
fixed effects, respectively; μi are fixed effects for districts and υi,t is the model’s error term.

4. EMPIRICAL RESULTS

4.1. Main findings

4.1.1. Incidence rates. Estimation results for the different DiD specifications presented in Table 2
generally point to statistically insignificant treatment effects from hosting professional football
matches with live spectators on the regional COVID-19 infection dynamics (evaluated at a 10%
critical level). This result is obtained by all three DiD specifications for the full sample including
all professional football matches in our event window up to October 18, 2020.15 However, when

14 We conduct all SCM estimations in Stata using the SYNTH (Abadie et al., 2010) and SYNTH RUNNER (Galiani
and Quistorff, 2017) ado packages.

15 Underlying probit regression results for DR estimation as well as balancing tests for covariates can be found in the
Online Appendix (Table S2 and Figure S2).
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we split the sample by leagues, the results in Table 2 point to positive, albeit only marginally
significant, treatment effects for matches in the first league (Erste Bundesliga). In terms of effect
size, the number of infections per 100,000 inhabitants is estimated to increase by about 0.5 to 0.6
cases per day in the first 14 days after the football match. Evaluated against the total number of
infections in NUTS-3 regions with first league matches, this translates into an increase in daily
incidence rates by about one twelfth (7.5 to 8%); effect size is very similar across the different
specifications.16

Given that COVID-19 cases typically appear in the data with an average delay of roughly
7–10 days due to the duration until the onset of symptoms, testing procedures, and a reporting
lag by health authorities (Mitze et al., 2020), we reevaluate the above findings by means of the
PES approach. As shown in Figure 2, the plotted daily treatment effects largely confirm the DiD
results. Panel A of Figure 2 visualizes the effects for all matches, showing that infections do
not increase significantly after treatment start. Panel B for first league matches indicates that the
daily incidence rate gradually increases for this subsample and that the treatment effect turns
statistically significant in the second week after the match. For the overall sample, effect size
is very similar if we compare the static DiD effect with the average of daily effects from PES
estimation. In the case of the first league results, we find that the post-treatment average of daily
PES effects are somewhat larger than the static baseline DiD effect. Given the potential bias of
static DiD in the case of dynamically growing effects (Borusyak and Jaravel, 2020), we argue
that the DiD estimates should be seen as conservative lower bounds for the true treatment effect.

The DiD and PES findings are further supported by SCM estimation. We find insignificant
treatment effects for the full sample of match locations, but significant and sizeable effects for first
league matches (see Figure 3). As for the dynamic PES approach, effects are observed to grow
over time. Different from DiD and PES estimation, the SCM approach cannot explicitly control
for a weekly pattern in the estimations (i.e., repeating spikes in reported COVID-19 cases over the
different days during a calendar week as a result of the institutional setup of the German health
system). We thus calculate daily marginal effects for SCM from a comparison of the seven-day
rates, rather than the daily incidence rates, between treated districts and their respective synthetic
control groups. While the temporal evolution of effects is thus somewhat smoother in the case
of SCM compared to the PES results, the overall effect size and, importantly, dynamics is very
similar across both estimation approaches.

4.1.2. Mobility estimates. While we found partial evidence for statistically significant treatment
effects, particularly resulting from first league matches, the overall results for the full set of
professional football matches were mainly insignificant. This raises the question whether effects
are absent or whether the power of our district-level estimation strategy is simply too low to detect
changes in epidemiological trends. To get an indication of the relevance of football matches and,
thus, the estimation power of our approach, we run a series of auxiliary regressions to test for
mobility effects as an alternative outcome (described at the end of Section 3). The idea is that if
we do not detect changes in intra-district mobility on match days, professional football matches
with spectators may be too small at the local population level to detect any district-wide effect.
However, the regression results shown in Table 3 clearly point to statistically significant mobility
effects on match days, which are both positive for the overall sample and the subsample of

16 We also ran dynamic regressions using lagged incidence rates as explanatory variables—executed by the XTLSDVC
(Bruno, 2005) package in Stata with an initial Blundell and Bond (1998) estimator. With regard to the estimated coefficients
for the treatment indicator (shown in the Online Appendix Table S4), the coefficients remain quite similar in terms of
effect size and statistical significance.
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Figure 2. Estimated daily treatment effects from dynamic panel event study.
Notes: Black dots show point estimates, dashed lines indicate 99% confidence intervals. The last daily
pretreatment dummy FT B

j

i,t with j = −1 has been omitted to capture the baseline difference between
treated and nontreated districts. Further details are given in the main text.
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Figure 3. Estimated daily treatment effects from synthetic control method.
Notes: Black dots show the average difference in the seven-day incidence rate between treated districts and
their respective synthetic control group; dashed lines indicate 95% confidence intervals calculated on the
basis of match quality-adjusted pseudo p-values obtained from a series of placebo-in-space tests for the

treatment period. Further details are given in the main text.
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first league matches. Importantly, if we conduct a series of placebo tests, e.g., by including a
one- and two-day lead and lag into the model as well as testing for placebo effects in the origin
districts of away teams for first league matches, we do not get evidence that our nonabsorbing
match day dummy only captures a latent time trend. Taken together, the results for the mobility
analysis in Table 3 do not underpin concerns on the estimation power of our population-level
identification approach. They rather underline earlier findings that mobility changes may be an
important channel for disease transmission (Bluhm and Pinkovskiy, 2021; Chernozhukov et al.,
2020; Mitze and Kosfeld, 2021).

4.2. Robustness tests

This section serves to assess the robustness of our main findings on the infection effects of
professional football matches. While the use of three alternative estimation methods can be seen
as an important robustness test in itself, we additionally run a series of other tests to identify a
potential sensitivity of the results. These additional tests differ by sample design related to the
specification of the post-treatment period and the group composition of treated and nontreated
districts. These robustness tests are mainly applied to the baseline DiD specification. As a first
robustness test, we extend the treatment period from a maximum of 14 days in the basic DiD
model to 20 days for all leagues (see columns 1–3 in Table 4) and for the first league separately
(columns 4–6 in Table 4). The statistical significance of the estimated treatment effects is very
similar for the extended treatment period as for the 14 days baseline estimates shown in Table 2.
However, we observe that estimated effects are larger for the 20 days treatment period.

This finding is in line with the dynamic PES and SCM results pointing to accumulating effects
over time. Nonetheless, we treat the results from this longer 20-days treatment period with some
caution for the following reason. As most districts in the treatment group host a new match after
two weeks, effect identification may suffer from the problem of multiple treatments for each
treated unit. Moreover, extending the post-treatment period also increases the risk of capturing
latent events as drivers of a region’s infection dynamics that are not related to professional football
matches in the coefficient for the treatment indicator. In our (robustness) analysis, we will thus
primarily focus on the event window of 14 days after each individual football match.

We also run placebo regressions, assigning treatment status not to each de facto treated NUTS-3
district, but to the district of the away team in each match, which is not ‘treated’ as the afore-
mentioned hygiene protocols did not allow away fans in the stadium. Any latent regional factors
(specific characteristics that only apply for districts with matches) that confound our identifi-
cation strategy, should lead to the same results in the placebo regressions. Or, put differently,
significant treatment, but insignificant placebo treatment, effect would tell a clear story in terms of
the infection effects from professional football matches with spectators. Columns 7–9 in Table 4
show the results from these placebo regressions that estimate pseudo-treatment effects for the
subsample of first league matches, for which we have identified significant treatment effects. The
placebo treatment results reported in Table 4 are statistically insignificant across all regression
specifications. Hence, the main result from this placebo test is that we do not find evidence for
latent confounding factors, which correlate with the status of hosting a first league match, biasing
our estimation results.

This finding further places the focus on potential infections in the stadium. One common
argument made in the public debate is that—given the large fan base of first league teams—not
stadium visits as such are a risk for higher infection rates, but rather private meetings of fans to
watch the match on television, either in private locations, restaurants, or bars. The results from

C© 2021 Royal Economic Society.
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our placebo analysis do not provide evidence for this transmission channel, though, as we should
observe similar effects in treated districts hosting the match and in the home district of the away
team. This is not the case.

We have also tested for potential spillover effects of football matches to neighbouring districts,
i.e., districts adjacent to districts hosting a match. Our identification strategy so far has been built
on the assumption that spectators are solely inhabitants of the NUTS-3 districts hosting the match
(i.e., COVID-19 transmission are restricted to take place within this district). As an extension,
we have also tested whether the incidence rates in neighbouring districts of match locations are
similarly affected by the matches or not (results are reported in columns 1–2 in Table S5 in the
Online Appendix). Additionally, we have tested if omitting these neighbours affects the baseline
DiD results. If potential latent spillover effects to neighbouring districts affect the control group,
such spillovers would bias the estimated effects downwards (results are reported in columns 3–4 in
Table S5 in the Online Appendix). Taken together, we find that treatment effects in neighbouring
regions of a match location do not appear to be statistically significant. Deleting neighbouring
counties also does not affect the baseline estimation results.

Two further aspects are considered for additional robustness tests. First, we focus on the group
of treated districts with first league matches for which we find significant treatment effects. As
this group is relatively small, observed effects may thus be driven by the infection development
in one specific ‘hot spot’. Although Figure S4 in the Online Appendix shows that all regions
with a professional football match lie within the overall regional distribution of the seven-day
incidence rate, the corresponding rates for NUTS-3 districts hosting a first league match tend
to vary stronger over time compared to the epidemiological development of match locations for
the second and third league. To rule out that our estimated effects are driven by single districts,
we perform leave-one-out estimates. In doing so, we run 14 regressions, sequentially leaving out
one treated first league match district and test whether the results turn out insignificant. Although
the effect size varies between the different regressions, the statistical significance remains mostly
stable throughout this leave-one-out analysis.17

Second, we leave out those districts that have exceeded a seven-day incidence rate of 35
infections per 100,000 inhabitants during our sample period. The reason is that this serves as a
first critical benchmark to initiate specific local measures by public health authorities to suppress
the further spreading of COVID-19 in these regions. Including such districts in the comparison
group may potentially bias the average infection rate in this group upwards (if dynamic effects are
present) or downwards (if initiated measures of local authorities additionally slowdown incidence
rates in these regions). Turning to the results of this last robustness test (see Table S3 in the Online
Appendix for detailed regression outputs), we find smaller effects compared to the benchmark
treatment effects (as shown in Table S6 in the Online Appendix) together with mixed evidence
for statistical significance.

4.3. Transmission channels

Going beyond the overall identification of treatment effects, we also study underlying channels
offering potential causes for effects to occur. The empirical evidence for statistically significant
treatment effects in the first league, but insignificant findings for other matches, poses the question
of the underlying transmission channels that may drive this result. Basically, we apply hetero-
geneity analyses, interacting the treatment indicator with further indicators which may plausibly

17 Results are not reported here, but are available on request and can be run using the replication files accompanying
this paper.
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cause higher infections after matches. Equation (4.1) shows the underlying test strategy for the
identification of transmission channels in the baseline DiD model.

For each of the different channels we test for differences in the coefficients δ1 and δ2 for the
interaction terms Ψi,low × FTBi,t and Ψi,high × FTBi,t . Thereby Ψi,low is an indicator for matches
with below median for (a) number of spectators, (b) utilisation rates, (c) probability of using
public transport, and (d) the strictness of face mask regulations, respectively (we do not expect
strong effects for matches indicated with Ψi,low). Vice versa, Ψi,high is an indicator for matches
where we expect significant effects related to above median values for one of the abovementioned
transmission channels.18

IRi,t = δ1(Ψi,low × FTBi,t ) + δ2(Ψi,high × FTBi,t ) + Xi,tβ + τt + μi + εi,t . (4.1)

To be more specific, the selection of potential transmission channels builds on the following
ideas: first, we test if the total number of spectators affects the results. This approach builds on
the hypothesis that, especially around large stadiums, facilities are crowded if more spectators
are permitted to watch the match. Focusing on first league matches, we construct a binary
dummy that takes a value of 1 for those matches in which the number of spectators exceeds the
sample median (approx. 6,300 spectators). We label this dummy ‘large match’. We then interact
this dummy with the basic treatment dummy and do the same for matches with the number of
spectators below median (‘small match’). The coefficient for treated regions with an above median
number of spectators is found to be statistically significant and remains stable over different DiD
specifications with an effect size of about 0.8 to 0.9 (Table 5, columns 1–3). However, if we test
for coefficient equality between both treatment groups, the null hypothesis of equal coefficients
cannot be rejected. This points to weak differences between matches with an above and below
median number of spectators.

Second, we seek to detect if utilisation rates within stadiums (and not the total number of
spectators) affect the risk of higher infections. Utilisation rates are measured as such that they
relate the number of spectators to total stadium capacity (seat occupation). This approach follows
the idea that stadiums with a relatively high seat occupation rate may be too crowded to ensure
adequate social distancing when entering/exiting and moving around in the stadium. As before,
we capture potentially heterogeneities in the treatment group by forming separate dummies for
matches with a spectator density above/below the median. However, the estimates generally do
not show a significantly higher incidence rate for one of these two subgroups (see Table 5) and
coefficient equality across groups cannot be rejected.

Third, in a similar vein, we test whether the share of spectators that access the stadium by public
transport increases the infection rate. As we do not have any data on actual public transport use, we
proxy the probability of using public transport by the car parking capability at each stadium. This
proxy builds on the hypothesis that a lower probability to travel by car (in nonpandemic times) is
indicated by fewer parking capabilities and that this link also holds for travel behaviour during the
COVID-19 pandemic. However, our estimates shown in Table 5 do not provide evidence for this
transmission channel. The results remain statistically insignificant throughout all specifications.

Lastly, we exploit differences in hygiene protocols in each stadium with regard to specific face
mask regulations. We can identify one distinct difference in these protocols. One type of protocol
mandates the wearing of face mask when entering or walking around in the stadium, but does
not require wearing a mask when seated (we refer to this as ‘limited face mask obligation’). The
other, stricter protocol mandates the wearing of face masks throughout the entire stadium visit

18 An overview on the relevant indicators used for the robustness analysis is given in Table S3 in the Online Appendix.
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without any exception. Prior research has pointed to the role of face masks suppressing the spread
of the virus (Chernozhukov et al., 2020; Mitze et al., 2020). Accordingly, we construct a dummy
that takes a value of 1 for matches with limited mask obligation, i.e., prescribe the wearing of
masks when walking around in the stadium but not when seated.19 This dummy is also interacted
with the treatment dummy.

The result for the interaction term between the limited face masks dummy and the treatment
indicator in this case shows that NUTS-3 districts hosting a match only with a limited face mask
obligation experience a significantly higher COVID-19 incidence rate in the treatment period of
14 days following the match. In terms of effect size, the increase translates into a higher infection
rate of 0.8 to 1.0 cases per 100,000 inhabitants per day. This translates into an approximately
20% relative rise in the incidence rate for treated regions during the treatment period. For districts
hosting a match with strict face masks regulations no increases in the incidence rate are observed.

The face masks regulations mark the most important transmission channel identified from the
interaction term estimates (in terms of statistical significance and effect size). In order to further
investigate potential dynamic effects, we also apply PES and SCM to this specific channel. The
obtained results are shown in Panel A and Panel B of Figure 4. In the case of PES estimation, we
find that football matches with limited face mask obligations clearly show that marginal effects
on the incidence rate become statistically significant after approximately 10 days and are larger
than the overall results for first league matches. However, interpretations for this specific result
should be done carefully because the visual inspection of the figure indicates that the common
trend assumption may not hold consistently, i.e., estimated effects prior to treatment start seem
to pick up a trend that continues during the treatment period. Still, we observe that, only about
nine days after treatment start, incidence rates in treated districts significantly exceed those in
nontreated comparison districts (evaluated against the 95% confidence intervals plotted in the
figure).

The SCM estimation (shown in Panel B of Figure 4) confirm statistically significant infection
effects and do not indicate any latent trend starting in the pretreatment period. Additional PES
estimates for matches with an above median number of spectators are shown in the Online
Appendix (Figure S3, Panel B). Here, the PES results confirm the DiD estimates that treatment
effects are only marginally significant over the 14-day treatment window. Taken together, our
estimates for the identification of potential transmission channels of infection effects from stadium
visits identify a strict face mask requirement as an important element of public health strategies
and associated hygiene protocols in times of the COVID-19 pandemic with no little alternative
means to control for latent infection risks.

5. CONCLUSION AND DISCUSSION

With the start of the 2020/2021 season, German professional football teams, supported by German
politics and health authorities, initiated an ‘experimental’ phase that reopened stadiums for up to
10,000 spectators per match. Reopening was possible if certain epidemiological conditions were
met and organising clubs implemented hygiene protocols approved by local health authorities.
In this context, we have investigated the effects of professional football matches with at least
1,000 live spectators on population-level COVID-19 incidence rates in NUTS-3 districts hosting

19 When we compare the seven-day incidence rates between hosting districts with and without strict face mask
obligations, this does not show significant mean differences on the basis of t-tests. Hence, stricter face mask obligations
do not seem to be a reflex of higher incidence rates and accordingly stricter local policy measures.
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Figure 4. Treatment effects for first league matches with limited face mask requirement.
Notes: Black dots show estimated treatment effect per day, dashed lines indicate 95% confidence intervals.
In the case of the event study, the last pretreatment dummy FTBj

i,t with j = −1 has been omitted to capture
the baseline difference between treated and nontreated districts. In the case of SCM estimation, confidence

intervals are calculated on the basis of match quality-adjusted pseudo p-values obtained from a series of
placebo-in-space tests for the treatment period. Further details are given in the main text.
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a match using a quasi-experimental setup. Our sample with daily observations for 401 NUTS-
3 regions covers the period from August 10 to October 18, 2020, with matches taking place
throughout September in the first round of the national cup and the first two match days of
all three professional football leagues. This clearly defined event window allows us to observe
potential infection effects for at least 14 days after the match.

We have estimated treatment effects by static difference-in-difference estimation with staggered
treatment start, dynamic panel event study, and synthetic control method. For the full sample of 41
match locations, our estimation results do not provide evidence for statistically significant higher
infection dynamics in NUTS-3 districts hosting a match vis-à-vis similar district without this
treatment. However, we find evidence for significant treatment effects once we limit the sample
to first league matches. Our findings point to a significant increase in the infection rate roughly
1–2 weeks after the match. To assess the power of our estimation approach, we have also tested
for mobility effects in match locations on match days. We find a significant increase in mobility
not only for first league matches but also for the overall sample. This makes us confident that the
obtained results at the local population level do not suffer from a low estimation power and that
effects may differ by professional football leagues.

To investigate potential transmission channels we have, among other factors, checked for treat-
ment heterogeneities stemming from match size, i.e., the number of spectators, and from different
hygiene protocols. Matches with more spectators seem to be associated with a higher incidence
rate. However, given that post-estimation tests cannot reject coefficient equality between larger
and smaller matches, results should be interpreted with care and we argue that this transmission
channel is weak. Moreover, our results from all three estimation methods clearly suggest that
a rigorous face mask obligation should be implemented for future matches with live spectators.
Here, results point to a significant regional COVID-19 increase if hygiene protocols only pro-
vided limited face mask covering (i.e., wearing masks while walking around inside the stadium
but not when seated). This result is not observed for matches with a strict face mask obligation
throughout the entire stadium visit.20

Taken together, although no systematic effects for all matches could thus be observed, we
conclude that certain large-scale sport events, i.e., particularly matches with a large fan base that
accordingly mobilise a large number of people to watch these events live, may pose an additional
COVID-19 infection risk under the general circumstances studied. This effect becomes especially
visible when estimators are applied that account for the dynamic, i.e., time heterogeneous,
development of incidence rates at the local population level.

We have carefully tried to evaluate the sensitivity of our findings to changes in the estimation
setup and sample design. We find that the results are robust against the chosen estimation method
and also the conduct of placebo regressions, which test for effects in the home districts of
away teams in individual matches (while fans from these teams were not allowed to enter the
stadium). The placebo regressions thus exploit the random distribution of match days between
the home and away teams. In this setting, it can be assumed that the treatment group in the
placebo regressions hardly differs from the group of districts hosting a match with spectators on
the respective match days. Strengthening our finding, these results from the placebo test remain
statistically insignificant without exception (in contrast to the actual treatment effects) and do not
have positive or significant coefficients.

20 Some clubs have already anticipated this potential transmission channel and changed their hygiene protocol (after
our sample period has ended). See a press report by the German-wide sports news portal Kicker at: https://www.kicker.d
e/vfl-appell-vor-bielefeld-maske-auf-788051/artikel (last accessed: November 19, 2020).
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Our district-level identification approach has the natural limitation that we cannot conclude
that infections took place right away in the stadium. For example, the additional infection effects
observed during match days with many spectators may indicate that bottlenecks are created in
the vicinity of the stadiums, leading to additional infections. On a more general level, football
matches taking place with many live spectators may also indirectly affect the compliance with
hygiene rules and social distancing (e.g., private meetings) of other inhabitants. People may be
less willing to restrict their own behaviour when they see spectators joining a large event on their
way to the stadium. These factors may also explain higher incidence rates in match locations.

Based on our findings, the best advice that we can give to public health authorities and organisers
of future large-scale sport events in times of the COVID-19 pandemic is that proper hygiene
protocols should be a key element of the reopening concepts. Specifically, assigned seating,
social distancing measures in the stadium and its vicinity and, most importantly on the basis of
our findings, an extensive face mask duty should be applied also in times of lower incidence
rates (see Tupper et al., 2020, for similar suggestions in the context of comparable events). These
measures should be accompanied by systematic use of rapid testing for stadium visitors—an
extension to existing hygiene protocols, which was not available during the ‘experimental’ phase
in late summer and early autumn 2020. If combined with increasing vaccination rates, this should
open up the possibility to let fans back into stadiums in an opening-under-safety approach.

In addition (not testable in our data), fans and spectators, in- and outside the stadium, need
to understand that compliance to hygiene protocols is essential for limiting the spread of the
virus. We also need to state that our observed results have to be interpreted conditional to the
overall national infection dynamics, which was moderate in Germany for the sample period under
investigation in this study, i.e., our nonsignificant results (except for first league matches) should
not be taken at face value as evidence for reopening stadiums during the peak of a pandemic wave
and/or the emergence of virus mutations that may be associated with a significantly higher viral
transmissibility even for outdoor activities.

DATA AND CODE AVAILABILITY

All study data have been made public to support replication studies. Data files and Stata codes are
provided as supplementary data and can also be accessed in the following data repository with
DOI: 10.6084/m9.figshare.13337966.
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